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FRACTURE MECHANICS ANALYSIS OF APOLLO

i

BLOCK I TITANIUM ALLOY PRESSURE VESSELS

(COMMAND AND SERVICE MODULES)

By S. V. Glorioso and G. M. Ecord

SUMMARY

A fracture mechanics analysis of the titanium alloy pressure ves-

sels on the Block I Apollo Command and Service Modules is presented. ,

The proof pressure test is the base line for the evaluation of the pres-
sure vessels with respect to maximum flaw size possible after proof I

testing. A subsequent linear elastic fracture mechanics analysis of the
.. maximum possible flaws with respect to subcritical growth is made for

the various Apollo pressure vessel environments. J

The results show that in some cases, the maximum operating pressure
-.. of the vessels could cause flaw growth if the maximum flaw which would

" allow a successful proof test existed in the tank. In all cases, how- :.

ever, the normal operating pressure is below the pressure which would
cause growth. The maximum pressure which will assure no flaw growth is

specified for each vessel.

', In the case of the Electrical Power System Cryogenic hydrogen ves-

sel, it is shown that the present proof test (which is done at room

temperature) will not screen out flaw sizes less than the vessel thick--

_ ness, and, therefore, for the purpose of a fracture mechanics analysis,
the proof test gives no usable information. The vessel design is con-

_ trolled by the creep properties of the material at room temperature _nd

,_ consequently at the operating stress at cryogenic temperature the vessel
._._ is considered to be safe.

The rationale used in the analysis of the pressure vessels and re-

lated experimental data are included in this report.

i.

...._ | P' _, ...... _ •.-,...__.;,_I. R_:_ ',_"'-__• _ -_"aI " ,, i n_ u
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INTRODUCTION

The aerospace industry has always faced the serious problem of ob-

taining minimum weight spacecraft structures with maximum reliability.
To minimize weight, high strength materials are being used under stress

, conditions associated with low safety factors. Unfortunately, the high

strength conditions of many alloys presently in use for pressure vessels

are sensitive to small flaws and various environments and, therefore
require advanced analytical and inspection techniques to insure relia-
bility.

It is important to recognize that limitations in present nondestruc-

tive inspection techniques (which are subject to the vagaries of the
inspector and depend on artificial reference flaws for interpretation)

will allow flaws to escape detection. Attention must be given to the

way in which these flaws may grow or propagate during ground testing and

flight to insure that they do not result in failure of the pressure ves-

sels during use. i__
l

This report presents a fracture mechanics analysis of the Apollo _._
Command and Service Module (CSM) pressure vessels made of titanium

alloys and an examination of inspection methods.

If properly designed, the proof test can be a valuable Hnspection

tool although, in some cases, engineering limitations may prevent the

test from being used to screen flaws as small as required to preclude a
service failure.

The concepts of linear elastic fracture mechanics are used in this

paper to examine the relationship of the maximum flaw size in a pressure

vessel passing a proof test and the subsequent subcritical crack growth
' possible in ground test and flight environments. A fracture mechanics

analysis based on a proof test of a pressure vessel considers only those
flaws which may exist in the vessel after the proof test and their sub-

sequent effect on the vessels under the known service requirements.

The analysis does not incorporate effects on service life due to materi-

als discrepancies or physical damage to the vessels subsequent to the
proof test such as might be caused by improper handling or the use of

fluids which are not considered in the analysic.

Background Information.- The fracture mechanics approach to the

fracture toughness of a material has grown from a concept presented by
Griffith (i) in 1920. Griffith postulated that the fracture strength

of a very brittle material such as glass was governed by the behavior of
the severest crack of a distribution of cracks in the material. He

further suggested that the strength of the material could be calculated

from solid state surface ener_ and crack size by a critical instability

............" I
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relation. Instability was assumed to occur when the strain energ2
release rate with crack extension exceeded the rate of increase oI

surface energy.

Griffith's energy concept has been re-examined and modified by
several investigators so that it could be applied to metals which are

not so brittle as glass. In 1952, Irwin and Kies (2) showed that a

modified form of the Griffith concept, in which plastic strain work is
considered, could be employed in fracture strength analysis in the

presence of substantial amounts of plastic strain so long as fracture
occurred prior to general yielding. Irwin published data in 1957 (3)

from which it was concluded that the energy release rate could be
directly related to a parameter which has been designated the stress

intensity factor, K.

In 1963 it was shown by Paris and Erdogen (4) that cyclic crack

growth could also be related to _he stress intensity factor. Subse-
quently, in 1965, it was demonstrated by Johnson and Willner (5) that

slow corrosive crack growth also could be expressed as a function of __
the stress intensity factor.

The stress intensity factor approach to fracture toughness has been

generally accepted as the best currently available means of utilizing
fracture mechanics in practical problems. This is shown by the many

publications appearing in the past few years and the general interest

being expressed concerning the subject.

In the simplest terms, the fracture toughness parameter describes

the maximum flaw that a material can tolerate without rapid fracture

when loaded to a prescribed stress level. The fracture toughness

parameter is the value obta±ned for the stress intensity factor which
will result in flaw instability or material failure, and is denoted as

the critical stress intensity factor, Kc. The minimum value of Kc, and

hence the minimum value of stress for failure with a given flaw occurs

when the state of deformation is plane strain. (Note: Plane strain is

generally considered to exist when one of the three principal strains
is zero or negligible). This minimum value of the fracture toughness

parameter for a material is denoted as _C' and is described as the

_, plane strain fracture toughness.

_i The stress intensity factor, K, is proportional to the product of _'_/

_ the applied stress and the square root of the crack depth. Irwin (6)

derived the expression relating the stress intensity factor, gross ...._

stress, and crack size for semi-elliptical surface flaws, and showed '_:

1970025194-007
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that the state of deformation at any point on the flaw periphery was one

of plane strain. Irwin's equation for stress intensity can be written

1

, KI : 2 (i)

where ° is gross stress and a/Q may be considered a normalized or "re-

solved" crack depth. The crack depth is "a," and "Q" is a parameter
which primarily describes the shape of the crack. Q is dependent on

the ratio of the crack depth, a, to the crack length, 2c. Q also

depends, to a lesser extent, on the ratio of applied stress to the yield '
strength of the material. This results from the incorporation of a

plasticity correction factor in calculated values for Q. The most
severe crack is one which is long with respect to its depth. The value _

of Q for such a crack, if it is assumed to be elliptical, is approxi- ..:_
mately 1. Irwin's limits for the equation include the require,_ent that _
the crack depth, a, shall be less than one-half the thickness of the

material and the gross strauss, c, shall be less than the yield stress _
of the material.

However, in order to analyze thin-walled pressure vessels (less
than .125 inch thick for 6 A1-4V titanium alloy), it is necessary to

know the stress intensity for flaws which are relatively deep with

respect to vessel thickness. As the flaw depth increases to more than
half the thickness of the material, the stress intensity as described

by Irwin's equation must be magnified due to the effect of the free sur-

face on the flaw tip. Tiffany, Masters and Pall (7) describe the use

of appropriate magnification factors in conjunction with Irwin's equa-
tion Value8 for the magnification factor obtained from reference (7)

for flaws which are long with respect to depth (the most severe flaws)

are presented in Figure 1 as a function of the zatio of flaw depth to
material thickness, a/t.

The magnification factor, Mk,is applied to the Irwin equation to

obtain the stress intensity for deep surface flaws. The resulting
equation is written

1

- (2)

m
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TESTS AND RESULTS

Applicability to Apollo Vessels.- Table I lists the pertinent in-

formation for the Apollo Command and Service Module (CSM) titanium alloy
vessels which are analyzed in this report, including dome and cylindri-

' cal wall thicknesses, weld land thicknesses, and flight environments.

A primazy consideration in evaluating each vessel is the assumed

crack shape. In this report, it is assumed that flaws long with r(_#ect
to their depths exist in the tanks (a/2c < .15). Q may, therefore, _e

considered to be unity for this condition which represents the most
severe flaw configuration.

Analytical Procedure.- The average fracture toughness and tensile
properties obtained for ApcJllo titanium pressure vessel materials are

presented in Table II. These data have been determined experimentally
from test specimens repre'_entative of the pressure vessel material.

The value of the p]ane strain fracture toughness, KIC , for the

6AI-4V solution-treated and aged (STA) titaniam alloy forgings has been ""

determined to be approximately 44 ksi _ (8). That is, any combina-

tion of stress and crack size giving a stress intensity of hh ksi
will, by equation 2. result in failure of the material. The crack size

required to produce failure will vary with the thickness of the material.

For example, a str,._ssof 138 ksi in .053 in. thick material will cause
failure if a crack .023 in. deep exists, while "&hesame stress in

.027 in. thick material will fail if a crack .017 in. deep e'_ists. This

difference in effective flaw size results from differences in the magni-

fication factor, Mk in equation 2, which is dependent on the ratio of

crack depth to wall thickness; Mk is 1.09 in tne first case and 1.26 in

the second case.

To investigate the compatibility of _ pressure vessel material with

the fluid i_ is intended to contain, stressed specimens with cracks were
exposed to the fluid or enviromment in question. In the case of the
6Al-hV titanium alloy forgings, it was determined that for each environ-

ment tested an apparent threshold stress exists below which cracks in

_ the alloy vii1 not grov. For example, in the case of aerozine-50 this _
_i threshold value of stress intensity, Kth , is 80% of the critical stress

intensity at 70 ° F (Figure 2). The threshold is chosen so that data
from all specimens that failed or exhibited crack growth fall above the ",

threshold. An analysis of pressure vessels using this threshold value

_! would therefore be slightly conservative. This conservatism is desirable

because_ at the time, data from the large number of specimens necessary

t ,

i I | •
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for an adequate statistical analysis are not available. The experimental
threshold values for other environments are listed in Table III.

Specimen Preparation.- Standard configuration tensile specimens
(ASTM Specification E-8) are cut from vessel parent material and weld-

ments. A shallow cut is made in the surface at midlcngth of th_ speci-

, men by means of an electrical discharge L,achine (EDM). The specimen is
then fatigued under tension-tension type loading to grow a flaw which

propagates from the rqot of the EDM cut. Thi_ results in a polished,

shiny crack easily discerned by fractographic examination after the

specimen is tested. For determination of a static KIC value, the

fatigue-cracked specimen is loaded to failure in tension. The maximum

gross stress (based on original cross-section area) and the exact dimen-

sions of the fatigue crack, measured after the test, are used in equa-

tion 2 to calculate thefracture toughness (KIc_ of the material. Should

a constant-stress, flaw-growth test be desired, the specimen is loaded _'

to a prescribed gross stress in the selected environment after the '_

fatigue crack _s generated. If failure does nct occur in a predetermined

time, the speciz,en is "fatigue marked." That is, it is again cycled in i_tension-tension loading to add a second polished portion to the crack

area. The specimen is then tested to failure in tension. An area
between the two fatigue-cracked zones indicates growth during the con-

stant stress loading. A photographic example of a specimen sho_ing the

EDM cut, the initial fatigue crack, growth under constant stress in

methanol and the final 'fatigue mark" is shown in figure B. The KIC

value for this specimen was determined from the measured stress necessary

to break thc specimen dt_ing the tensile test and the total flaw size

which includes the fatigue mark. This value of KIC was divided into the

stress intensity value to which the specimen was loaded at the start of

, the fluid exposure, Kli, as determined from the constant stress and the

initial fatigue crack size, to give the stress intensity ratio, KI_KIc.

Fatigue data reflecting cyclic flaw growth of precracked specimens

determined in various environments are presented in Table IV.

Analysis of Data.- The application of the data from the static

fracture toughness, _C' and the sub-critical flaw growth to a pressure

vessel may he summarizea as follows. The stress intensity ratio {the

ratio of the initial streets intensity to the critical stress intensity,

Kii/_C)____ as a function of the time to failure for cracked specimens is

obtained experimentally a_d gives a curve as shown in Figure h(A).

.............. ! I.... ,
.... '_ .... i_ r
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The stress intensity ratio corresponding to the horizontal portion of

the curve is the apparent threshold value for onset of flaw growth in
the test environment. An increase of the stress intensity above this

value will result in flaw growth. The flaw will _ontinue to grow to

, the critical size at whiqh rapid crack gro-_h and failure occurs.
Be?Jw the threshold value, observable growth doe= not occur.

A graph consisting of the threshold stress intensity and the

critical stress intensity curve_ is constructed as illustrated in Fig-

ure h(B). If a proof te'Jt is cc ducted at a stress aA, and failure

does not occur, it can be assumed that no equivalent flaw equal to, or

greater than, aA exists at the end of the proof test. This informatio,

can be used to conclude that, if the pressure vessel is used at a stress

level less than _B in the same environment, then nrack growth will not

take place during the constant stress operationa_ Life. A pressure ves-

sel _'orthls fluid shoula be lesigned such that th_ maximum operating
stress gives a stress inten_.ty below the threshold value.

It must be noted here that the data used in this report have been q

developed for relatively short time exposures. For missions longer than
those of the current Apollo program, long time dat_ must be obtained.

By use of this method of analyzing pressure vessels, it can be

shown that safe operation can be predicted from the ratio of the proof •
pressure to the operating pressure, and from the threshold stress
intensity ratio required for crack growth. The derivation follows:

_= flaw size screened by proof cycle

I_) s maximum flaw size which will nat at the
grow operating

• o pressure

a - proof stress
P

a - operating stress
0

¥ - ratio of proof to operating stress, am/a 0

&_ R" thresh°ld stress intensity rati° _t _C)h _'r'

%.

| ||m .
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= then no flaw exists in the vessel at the time of the

proof test which could grow during the mission. Assuming [_ = {_-_
p \_]o _;

then the same magnification factor, MK, applies to both cases.

l

!
: (3)

KIC P\_/p Mk

Kth = RKIc = I.I_-Oo(Q)_ Mk (4) _o _g '

Dividing equation 3 by equation 4 and substituting -_ for c0 givesr

,,r--_ then < i _
p o

1 <

Therefore to guarantee no flaw growth _= i. In many Apollo ves- "
1 <

sels the ratio of proof to maximum operating stress is 1.33, so 1.33R - i _

an# therefore --KTH for the fluid environment in these vessels must be
KIC ',

•75 or greater to assure safety at the maximum operating stress.

In this analysis the value of the fracture toughness of the i

material cancels out. A forging with a lower toughness than _ne average

KIC = 44 ksi i_., for example KIC = 38 ksii_-_.,would allow a smaller "

flaw to be screened in the proof _est than a forging with a higher tough- _

ness, such as _C = _9 ksii_-n., however, the less tough forging would _

fail in service with a proportionally smaller flaw than the tougher forg- _
ing. Therefore, any scatter in the static fracture toughness for the
Apollo pressure vessels does not affect the analysis.

i

// ]

6 .
-V" ',_q
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Nondestruc zve qests.- The nondestructive test (NDT) methods which

are presently being utilized on Apollo vessels are X-ray inspection of
all welds and penetrant inspection of some tank surfaces. Inspection

by X-ray can reveal both surface and subsurface flaws, whereas penetrant

inspection can detect only those flaws which are open to the surface.

Both inspection methods are dependent upon the technique and the train-

ing of the inspector. Therefore_ the minimum flaw size which may be

detected varies. For this reason a precise limit cannot be assigned
to the size of flaw that will be detected by either inspection method.

A few relatively large flaws have accidently escaped detection in

Apollo vessels in the past: one of the most recent examples was a
.060 in. deep flaw in a LM descent gaseous oxygen tank which caused
failure (I0).

The ability of the human eye to resolve fine detail depends on the

contrast between the detail and the surrounding medium. In penetrant

inspection, excellent contrast is usually obtained between the flaw and

the surrounding medilr,. A practical lower limit of flaw resolution in _

penetrant inspection is in the range from 0.001 to 0.0001 in.
i

In X-ray inspection, the lower limit of flaw detection is deter-

mined by the resolution capability of the equipment, and two percent

sensitivity is considered excellent flaw resolution. For example, with
a metal thickness of 0.050 in., resolution of 0.001 in. flaw would be

considered excellent. However, most flaws in welds do not have sharply
defined boundaries, and a more realistic limit of detection would be

flaws ha_ing a least dimension three-or-four-times larger than the _
optimum limit (0.004 in. flaws in 0.050 in. thick material).

Because flaws caused by stress corrosion or fatigue cracking can
be tightly closed, they are sometimes beyond the limits of detection

" by either inspection method, unless the inspection is performed under
pressure to open the cracks.

In the case of metallurgical flaws in the material, such as massive
embrittled alpha in titanium which may be caused by gas contamination

during the melting process, no satisfactory method of detection is known.

Such flaws are extremely rare but have caused failure in structures.

Most notable is the failure during proof of a LM pro_ellant tank (ii).

In general, NDT techniques cannot be relied upon to guarantee

_ flawless pressure vessels. NDTmay save a vessel which would not sur=
vive a proof test; however, it is the proof test which provides the

moot dependable base-line for assurance of subsequent vessel perform- S
asce.

l

I

................... ,
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Apollo Pressure Vessel Analysis.- Curves for each Block I titanium
alloy pressure vessel are constructed Snowing the variation of flaw s_ze

with membrane stress and vessel pressure for the applicable stress in-
tensities (critical and threshold). Because this flaw size varies with

membrane thickness, curves are included for welds, hemispherical ends
and the cylindrical portion of the vessels. Curves for the Block I SPS

' fu:l and oxidizer tanks are included in FigJres 5 through i0. The RCS
fuel at,doxidizer tanks are analyzed in Figures ii through lb. The

SPS helium vessel data are p2esented in Figures 15 and 16; and the CSM
RCS helium vessel data are presented in Figure 17.

The data from Figures 5 through 17 are tabulated in Table V. The _-

apparent maximum safe operation pressures and temperatures as determined
by the fracture mechanics analysis are presented in column five of the

table. These values represent those limits below which vessels which _

have survived the prescribed proof pressure will not experience flaw

growth in the given environment. Safe operation of the pressure vessels "_
is assured within these limits. Safe operation above these limits can-

not be predicted because it is not known that all existing flaws are "_
sufficiently small to preclude flaw growth and subsequent vessel failure.

It is shown that pressures of SPS and RCS vessels containing N20h at

temperatures approaching 105 ° F must be held below the maximum operating _.i

pressure of the system to be assured safe.

In some cases vessel leakage will result before a flaw can grow to

a critical size at operating pressures. An example of such a condition
is illustrated in Figare lO. The longitudinal proof stress (axial) in
the SPS oxidizer vessel weld area is shown to screen flaws .065 inch or

larger. It can be seen that operation at normal or maximum system pres-
sures would result in vessel leakage before a flaw oriented normal to

the vessel axis (parallel to the weld) could grow to critical size. An

' analysis can also be made for the weld area of the SPS fuel vessels
shcwing that under similar conditions leakage will occur. An examina-

tion of Figure 12 shows that the RCS oxidizer vessels will leak rather

than rupture catastrophically while in operation below the apparent safe

pressure limit.

For the fracture mechanics analysis of the vessels containing

helium a threshold of .9 KIC is assumed for gaseous helium. This value

was chosen since it is believed that gaseous helium would have a thresh-

old no lower than that of air which is .9 _C" The Command and Service

Module helium vessels are ana_Tzed simultaneously in Figure 15 since
they are of the same dimensions and operate at the same design pressures.

:--..... "__,,, . ..... ,
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The vessel welds are not analyzed graphically. Assuming the threshold

K for gaseous helium in the weld area to be .9 KIC. the maximum safe

operating limit in the welds, expressed in vessel pressure, will equal

that in the _arent material. This is a reflection of the cancelling

out of magnification factors in the formula for KIC and K values as

, discussed in the Applicability section of this paper.

Figure 18 show_ the analysis of the 5A1-2.5 Sn-titanium Extra-Low-

Interstitials (ELI) _:'ade cryogenic hydrogen vessel. The proof test
provides no usable information, because the vessel thickness is less

than the depth of flaw that is screened at the proof pressure of

200 psi. For the liqt.id hydrogen vessel, a cyclic analysis was made
giving cycles to failure at the maximum operating pressure and -423° F

for various initial flaw depths as illustrated in Figure 19. Cyclic
analyses were not made for the 6Al-hV titanium solution-treated and aged

(STA) vessels because statistical cyclic data for this material are not

available. The 6Al-_V titanium STA material was spot-checked using a
minimum of fatigue specimens. The proof test s?rcens out relatively
small flaws in these vessels. Therefore, if _he vessel life includes

a minimum number of cycles the vessel will not be fatigue critical at
normal

operating pressures. However, it is desirable to hold cycling !
to a minimum since cyclic loading will grow any existing flaws. The
growth is insignificant for each cycle but is additive.

The data utilized in the analysis of the liquid hydrogen vessel

(Figure 18) are obtained from reference (9). The toughness at 75° F for _

5A1-2.5 Sn-titanium ELI alloy is approximately ll6 ksi J_n. as compared

to hh ksi i_n. for the 6AI-hV - titanium alloy in the solution-treated

and aged condition. The KIC dat_ _s plotted as stress versus flaw size

together with the KIC (42 ksi in.) value at -_23 ° F, since this gives

the depth of crack at a given stress for failure at the operational

temperat,Are. The apparent threshold for subcritical growth in liquid

-" hydrogen is 90 percent of KIC , i.e. 90 percent of 4h ksi

The safety factor for this vessel is high because of the low tem-

. perature creep problem associated with this alloy (12), and the opera-
tieual pressure is below the threshold for growth provided the vessel

does not leak at the start of the mission. (A crack depth greater than "!"._'_,,
L

4 _
the vessel thickness is required for growth at the maximtnn relief valve

pressure of 300 psig.)

Since there is no way to determine the maxim_n flaw which could

exist at the time of flight, various flaw depths were asstued in the

h

, _ m m •

r
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vessel varying from .005 inch deep to a depth equal to the vessel thick-

ness. The number of fatigue cycles necessary to cause leakage at the

maximum relief valve pressure and at liquid hydrogen temperature has

been calculated from stress intensity ratio (Ki/KI_ vs cycles to fail-

ure data. This data is shown graphically in Figure 19. For example, a

, flaw .005 in. deep and wide with respect to its depth (Q = l),would re-
quire approximately 2400 cycles of stressing from 0 to 46.9 ksi, (0 to
300 psig tank pressure) to propagate to a depth equal to the vessel

thickness. It can also be seen from the curve that if a flaw .005 in.

deep was cycled i000 times at 46.9 ksi, the flaw would have grown to a

depth of about .012 inch. (It requires approximately 1400 cycles for
a flaw .012 inch to grow to leakage.) In _ similar manner, the number

o_ cycles for any initial flaw depth to grow to a preselected flaw depth
can be read from the curve.

Because cycling causes even the smallest flaw to grow, the number
of cycles to which the vessels are subjected should be kept to a minimum.

!EVALUATION OF Ti-6A1-4V _LOY PRESSURE VESSELS
CONSIDERING EXPOSURE HISTORY PRIOR TO FLIGHT

The preceding analysis of Apollo titanium alloy vessels does not

consider interim exposures I;ovarious fluids and pressures after proof

testing and prior to flight. Figures 20 and 21 are graphic ill?_stra-

tions of KIC values for Ti-6A1-4V alloy forgings and welds with thresh-

old K values of some of the fluids which have been used in Apollo

vessels under pressure. The data presented in these figures correspond
to SPS oxidizer tank cylinders which were analyzed in Figure 8 and SPS

oxidizer vesuel welds which were analyzed in Figure 10.

Reference to Figure 20 shows that a vessel proofed at a stress of

1B8 ksi may experience flaw growth if exposed to Freon MF at stresses

above approximately 75 ksi. In the case of the SPS oxidizer vessel,

this stress corresponds to a pressure slightly above the normal opera-

ting pressure of 175 psi. Flaw growth at this stress could occur only
if the largest possible flaw after proof testing at 1B8 ksi existed in

the vessel. Smaller flaws would require correspondingly higher stresses
for growth.

In addition to the threshold values shown in Table III preliminary
experimental data indicate that Freon TF, another fluid used in some

Apollo titanium pressure vessels, has a threshold K value comparable to
that of aerozine-50.

m L:"_" -_--_, ,. ..... mu m'''''_"
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The pressure-fluid his%ory of any Apollo Ti-6A1-4V alloy pressure
vessel from initial proof to flight can he examined for indications of

pressure-fluid combinations which may have resulted in tank degradation

by use of data such as presented in Figures 20 and 21. If there is an

indication that tank degradation has occurred, the individual vessel

must be examined in detail to determine its reliability. As an example,
, such an analysis has been made for the SPS oxidizer and fuel vessels

on Apollo spacecraft 012.

Vessel analysis.- The SCO12 SPS oxidizer vessels were originally
J _

proof tested at 325 psi. This verified that flaws greater than (_ of

•03 in. did not exist in the weld heat-affected zones (refer to Fig-
ure 21). Subsequent to the proof test the vessels were exposed to

helium, nitrogen, and Freon MF. As can be seen in Figures 20-21, in an&

air or helium environment there existed no flaw which could grow at a

pressure of approximately 290 psi or less and in Freon MF at 75° F, no

flaw existed which could grow at a pressure of approximately 122 psi, or

less. However, these vessels were exposed to Freon MF under a pressure
of 2hO psi for _8 hours and 275 psi for 5 minutes. Reference to Fig-

ure 21 shows that a flaw as small as (_) of .008 in. could have grown.

The proof test screened flaws only as small as (a/Q) of .030 in. It

therefore is certain only that no flaw of /_)--
_, approximately .038 in. or

greater exists in the vessels (corresponding to the critical flaw size

at 275 psi). For this reason, to be assured safe, exposure to inhibited ,

nitrogen tetroxide must be held to a pressure below 215 psi at 70° F and

below 190 psi at 105 ° F. These pressures apply to flaws aligned per-
pendicular or parallel to the girth weld even though the axial membrane

stress is approximately one-half the hoop membrane stress. For flaws

parallel to the girth weld, the 275 psi pressure would screen flaws no
smaller than (a/Q) of .07h in. Should this flaw grow, the vessel would

leak rather than fail catastrophically at the above suggested operating

pressures.

A similar analysis of the cylindrical and dome sections of the ves-
sels showed that the weld area, analyzed above, is the most critical con-

sideration and is the governing factor in the safe pressurization of the
oxidizer tanks.

The SC012 SPS fuel sump vessel was re-proofed at 300 psi. This _=

indicates that flaws no larger than (a/Q) of .033 in. existed in the

i_ weld heat affected zones (Figure only7). The environment tc which the

vessel has been exposed subsequent to this proof is gaseous helium at *
2_0 psi. This is well below the threshold pressure for growth in helium
for .033 in. flaws. (Calculation shows that a flaw approximately
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.Oh in. deep is required for growth in gaseous helium at 2hO psi.) As

can be determined in Figure 7, this vessel is assured safe as long as

the pressure is maint_i_ed below approximately 230 psi at ii0 ° F. This

maximum is slightly below the system maximum operating pressure but well

above the normal operating pressure.

i

CONCLUDING REMARKS

The fracture mechanics analyses of the titanium alloy pressure

vessels on the Apollo Command, Service and Lunar Modules demonstrated

the value of the proof test to determine the maximum possible initial

flaw sizes in the various portions of the vessels. Nondestructive tests

such as X-ray and penetrant inspection when used on a production basis,

will not reliably detect all flaws that are large enough to cause prob- _
lems by sub-critical growth when exposed to various environments. _

Since only one flaw is needed to cause failure, the assurance provided by __'_
the proof test is necessary in most cases. _

Apollo Block I, CSM titanium vessels and Lunar Module vessels can

be assured to be safe if the operating pressures are held to maximum
values at the indicated temperatures as predicted by the analysis.

Should the vessel be exposed after the initial proof test to fluids

other than those considered in the analysis which could cause sub-

critical fl_w growth, then the i._itial proof does not assure safety and
each tank must be analyzed on an individual basis.

The following recommendations are made:

(1) The time at the proof pressure should be held to a minimum.

(2) The number of pressure cycles should be kept to a minimum.

(3) During the mission, the pressure and/or temperature should not
be allowed to increase above the value that would cause flaw growth as

predicted by the apparent threshold stress intensity and the maximum
flaw screened by the proof test.

_. _ _ _. -,w mm

"" llm
!

1970025194-018
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ADDENDUM A

Fracture Mechanics Analysis of the Lunar

Module Ascent and Descent Propellant Vessels

The Lunar Module (LM) propellant vessels have been analyzed in the
same mAuner as the Command and Service Module pressure vessels. The

fracture toughness and threshold values used for the Command and Service
Module analysis are applicable to the LM vessels since the material of

fabrication (Ti-6Al-hV forgings) and heat treat condition (Solution

Treated and Aged) are the same. Figures 1A through 4A i_!ustrate stress

versus flaw size curves for the ascent and descent state pressure ves-
sels. The fuel and oxidizer vessels in the ascent stage are identical

in configuration and pressure requirements as are the fuel and oxidizer

vessels in the descent stage. The respective curves, therefore, are

applicable to both the fuel and the oxidizer pressure vessels.
!

Examination of Figures iA and 2A shows that after a normal proof test

the Lunar Module ascent vessels are assured safe at the normal operating
pressure in any environment or at any temperature where the flaw growth
threshold value for the pressurizing fluid is slightly greater than

.60 K_C. Reference to Table III shows that this assures safe operation

for the fuel and the oxidizer vessels while at normal operating pressure.

If the maximum operating pressure is encountered, the stress intensity

for an assumed maximum permissible flaw is .75 KIC, and in this case

safe operation is assured only at temperatures below 85°F for the oxi-
dizer vessels and ll0°F for the fuel vessels.

Examina_ion of Figures 3A and_A shows that the Lunar Module descent

vessels are assured safe at the normal operating pressure in any environ-

ment and at any temperature where the flaw growth threshold value for the

pressurizing fluid is .70 KIC or greater. Reference to Table III shows

that this assures safe operation for the oxidizer vessels to 105°F and
for the fuel vessels to at least ll0°F while at normal operating pres-
sure. Should maximum operating pressure be encountei-ed the ozidizer
vessels are assured safe at temperatures below 90°F and the fuel vessels

at temperatures below llO°F.

_ It should be noted that the burst disc design for the descent propulsion

system has a tolerance which could allow a vessel pressure as high as

308 psi. Operation at this pressure, assuming the existance of the maxi- : .

_ mum size flaw which could pass the proof test, would provide a stress ....
intensity of .85 KIC at the flaw tip. At this stress intensity flaw

1 growth in fuel or oxidizer is high_v probable. ,
B

' ' ......' F..... ....

1970025194-019
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Cyclic flaw growth cf the ascent and descent propellant tanks does
not appear to be a significant consideration during cyclic service to

normal operating pressure. The proof test assures a cyclic life of

approximately 120 cycles at the maximum operating pressure.

No matter what the past vessel history, the next proof cycle cannot
, be guaranteed against catastrophic failure by fracture mechanics analysis

or other nondestructive techniques. Therefore, it is recommended that

cycling to proof stresses should be kept to a minimum.
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TABLE III.- THRESHOLD VALUES FOR 6AI-hV TITANIUM ALLOY
i

AND VARIOUS ENVIRONMENTS a

Threshold,

Temperature, Kt4KIcEnvironment OF

Parent metal Weld HAZ b
me-

Distilled water 65 O.86 0.86

Inhibited
distilled water 72 .82 .82

Aerozine-50 70 .80 -
i10

•75 .75

Freon MF 65 .58 .40 I

Methanol 72 .24 .28

Nitrogen Te'_roxide 70 .80 .80

(NO = 0.25) lO_ .7o .7o I

Monomethylhydra- ine
lO5 .75 .73

aData obtained from NASA Contract NAS 9-6665, The Iuvest!gatlon
of Flaw Growth Characteristics of 6AI-hV Titanium, The Boeing Co.,

Seattle, W_sh.

_Crack location 0.030 inch from weld - parent metal Ln_erface in
(me) *'heat-affected zone . _. ',

L

|

"" F q
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TABLE IV.- CYCLIC FLAW GROWTH DATA IN VARIOUS ENVIRONMENTS a

Temperature,
Material oF Environment _i/_C Cycles to failureb f

Lanar orbitor 72 Aerozine-50 .614 1755
forgings .921 96 .;:_

Allisonweldment _-

(HAZ) 105 Aerozine-50 .888 1044 -_

•922 516

Alli_on
cylinder 65 Freon MF .423 4116

i ._2 595 "17z

75 Distilled .518 1369

_mter .566 757
•752 122

75 Inhibited .542 1744

distilled .573 1054

water c .712 338

aData from reference 8.

b@ 5 cpm., streu ratio 0.5

c500 ppm Sodium Chromate added to distilled_Bter.

!

1970025194-024
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Figure 3. - Flaw characteristics for Ti-6AI-4V
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Figure19. - FatiguecrackgrowthdataforTitanium5AI-2 .SSnELI alloy at -423"F.
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